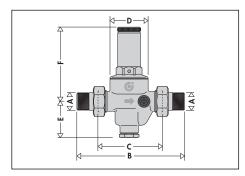
Riduttori di pressione

serie 5360 - 5362 - 5365 - 5366

Funzione

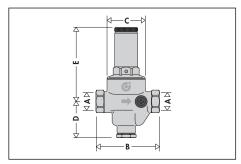
I riduttori di pressione sono dei dispositivi che, installati sulla rete idrica privata, riducono e stabilizzano la pressione in entrata dalla rete pubblica. Tale pressione in ingresso, in genere, risulta troppo elevata e variabile per uno sfruttamento corretto degli impianti domestici.

Caratteristica fondamentale, per un riduttore di pressione di qualità, è quella che consente di mantenere una pressione a valle costante, al variare della pressione a monte.

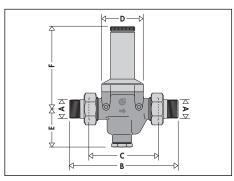

Gamma prodotti

Serie 5360.1	Riduttore di pressione attacchi maschio, con manometro	misure DN 15 (1/2"), DN 20 (3/4"), DN 25 (1"), DN 32 (1 1/4"), DN 40 (1 1/2")
Serie 5360.0	Riduttore di pressione attacchi maschio, senza manometro	misure DN 15 (1/2"), DN 20 (3/4"), DN 25 (1"), DN 32 (1 1/4"), DN 40 (1 1/2")
Serie 5362.1	Riduttore di pressione attacchi femmina, con manometro	misure DN 15 (1/2"), DN 20 (3/4"), DN 25 (1")
Serie 5362.0	Riduttore di pressione attacchi femmina, senza manometro	misure DN 15 (1/2"), DN 20 (3/4"), DN 25 (1")
Serie 5365.1	Riduttore di pressione attacchi maschio, con doppio manome	tro misure DN 40 (1 1/2"), DN 50 (2")
Serie 5365.0	Riduttore di pressione attacchi maschio, senza doppio manor	metro misure DN 40 (1 1/2"), DN 50 (2")
Codice 536660	Riduttore di pressione attacchi flangiati, con doppio manomet	ro misura DN 65

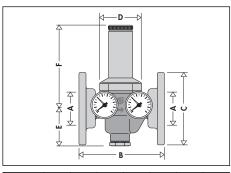
Caratteristiche tecniche e costruttive


serie <i>⇒</i>	5360/5362	5365	5366
Materiali:			
- Corpo:	lega antidezincificazione (R UNI EN 1982 CB752S	bronzo DIN 50930-6 RG5 PB3	bronzo DIN 50930-6 RG5 PB3
- Coperchio:	ottone UNI EN 12165 CW617N	ottone UNI EN 1982 CB753S	ottone UNI EN 1982 CB753S
- Membrana:	NBR	NBR	NBR
- Tenute:	NBR	NBR	NBR
- Sede e filtro:	acciaio inox	acciaio inox	acciaio inox
Prestazioni:			
- Pressione max a monte:	25 bar	25 bar	16 bar
- Campo di taratura pressione a valle:	0,5÷6 bar	0,5÷6 bar	0,5÷6 bar
- Taratura di fabbrica:	3 bar	3 bar	3 bar
- Temperatura max d'esercizio:	80°C	80°C	80°C
- Scala pressione manometro:	0÷10 bar	0÷25 bar a monte	0÷25 bar a monte
·		0÷10 bar a valle	0÷10 bar a valle
- Fluido d'impiego:	acqua	acqua	acqua
- Certificazione:	EN1567	EN1567	· -
- Gruppo acustico:	I	-	-
Attacchi:	- 5360; 1/2"÷1 1/2" (ISO 7-1) M	1 1/2"÷2" (ISO 7-1) M	Flangiati DN 65, PN 16 accoppiabile
	a bocchettone	a bocchettone	con controflange EN 1092-1
	- 5362 1/2"÷1" (ISO 228-1) F		
Attacchi per manometro:	uno da 1/4" (ISO 228-1) F	due da 1/4" (ISO 228-1) F	due da 3/8" (ISO 228-1) F

Dimensioni

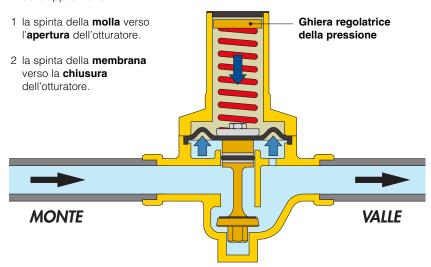


Codice	DN*	A**	В	С	D	Е	F	Massa (kg)
5360 40/1	15	1/2"	140	76 ®	Ø 51	53,5	89,5	1,25
5360 50/1	20	3/4"	160	90®	Ø 60	54	111,5	1,95
5360 60/1	25]"	180	95®	Ø 60	54	111,5	1,82
5360 70/1	32	1 1/4″	200	110	Ø 72	63	126	3,14
5360 80/1	40	1 1/2″	220	120®	Ø 72	63	126	3,64


^{*}Intercambiabile con serie 5350

Codice	DN*	A**	В	С	D	Е	Massa (kg)
5362 40/1	15	1/2"	81	Ø 51	53,5	89,5	1,10
5362 50/1	20	3/4"	95	Ø 60	54	111,5	1,57
5362 60/1	25	1"	100	Ø 60	54	111,5	1,58

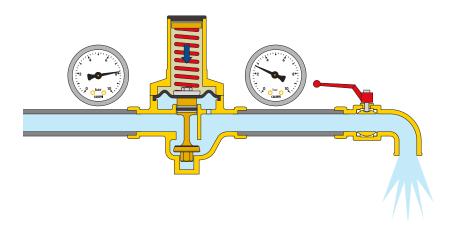
Codice	DN*	A**	В	С	D	Е	F	Massa (kg)
5365 80/1	40	1 1/2"	260	160	110	97	201	9,2
5365 90/1	50	2"	280	160	110	94	204	10,4



Co	odice	Α	В	С	D	Е	F	Massa (kg)
530	66 60	DN 65	225	Ø185	110	94	204	14,9

* Corpo valvola ** Attacchi

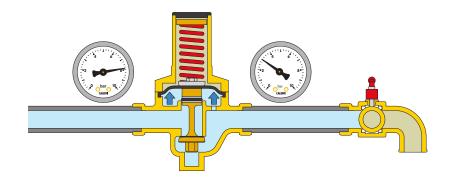
Principio di funzionamento


Il riduttore di pressione basa il proprio funzionamento sull'equilibrio di due forze poste in contrapposizione:

Funzionamento con erogazione

Quando sulla rete idrica si apre un'utenza, la forza della molla diventa prevalente rispetto a quella, contraria, della membrana; l'otturatore si sposta verso il basso aprendo il passaggio all'acqua.

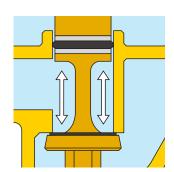
Maggiore è la richiesta d'acqua e maggiore sarà la diminuzione della pressione sotto la membrana provocando così un più elevato passaggio del fluido attraverso l'otturatore.



Funzionamento senza erogazione

Quando l'utenza è completamente chiusa, la pressione di valle si innalza e spinge la membrana verso l'alto.

In questo modo l'otturatore si chiude, impedendo il passaggio del fluido e mantenendo costante la pressione al valore di taratura.


Una minima differenza a vantaggio della forza esercitata dalla membrana nei confronti di quella esercitata dalla molla provoca la chiusura del dispositivo.

Particolarità costruttive

Sede compensata

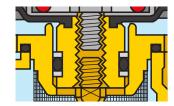
I riduttori di pressione Caleffi sono dotati di sede compensata. Ciò significa che il **valore della pressione di taratura** a valle rimane **costante** indipendentemente dalle variazioni di valore della pressione a monte.

Nella figura, la spinta verso l'apertura è controbilanciata dalla forza creata dalla pressione in chiusura agente sul pistone di compensazione. Dato che quest'ultimo ha una superficie uguale a quella dell'otturature, le due forze in gioco si annullano.

Silenziosità

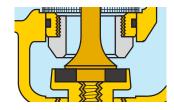
La conformazione interna, studiata per ottenere una forma fluidodinamica ottimale, ha consentito, durante i test svolti, di evidenziare un livello di rumorosità inferiore ai 20 dB.

Grazie a questa qualità, i riduttori Caleffi serie 5360 risultano omologati in gruppo acustico I, secondo quanto previsto dalla norma europea EN 1567.


Basse perdite di carico

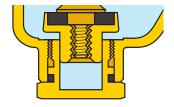
La conformazione fluidodinamica interna del riduttore consente di ottenere delle perdite di carico piuttosto basse anche in presenza di un numero notevole di utenze aperte.

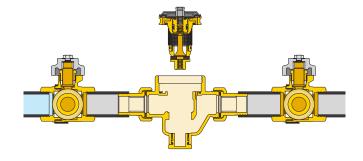
Questa caratteristica è importante in relazione alle perdite di pressione elevate causate dai dispositivi oggi presenti negli impianti, ad esempio dei miscelatori termostatici, che obbligano l'installazione di riduttori che ottimizzino le perdite di pressione.


Alte pressioni

La zona esposta alla pressione di monte è costruita in modo da operare anche ad alta pressione. Mediante degli anelli antiestrusione in PTFE sul pistone compensatore, la valvola può essere impiegata in servizio continuo con pressioni di monte fino a 25 bar.

Sede di tenuta

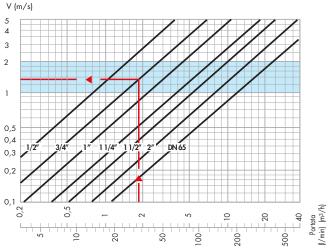

La sede di passaggio del fluido su cui agisce l'otturatore è in acciaio inossidabile, il che garantisce il mantenimento nel tempo delle prestazioni del dispositivo.


Superfici di scorrimento

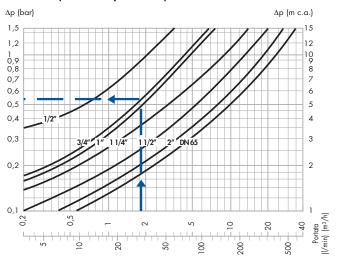
Le parti più soggette al deterioramento causato dagli attriti degli organi in movimento sono rivestite in PTFE. Questo trattamento aumenta notevolmente la longevità del dispositivo di riduzione.

Cartuccia estraibile

La cartuccia contenente membrana, filtro, sede, otturatore e pistone di compensazione è estraibile per facilitare le operazioni di manutenzione e pulizia del filtro.



Certificazione


I riduttori di pressione sono certificati come rispondenti ai requisiti della norma europea EN 1567.

Caratteristiche idrauliche

Grafico 1 (Velocità di circolazione)

Grafico 2 (Caduta di pressione)

Condizioni di riferimento: Pressione a monte = 8 bar Pressione a valle = 3 bar

Dimensionamento

Per facilitare la scelta del diametro corretto, qui di seguito riportiamo le portate caratteristiche degli apparecchi comunemente usati negli impianti idrosanitari:

Tabella portate caratteristiche

Vasca da bagno, lavello cucina, lavastoviglie	12 litri/min
Doccia	9 litri/min
Lavabo, bidet, lavatrice, vaso a cassetta	6 litri/min

Per evitare il sovradimensionamento del riduttore e delle tubazioni è necessario prendere in considerazione un corretto coefficiente di contemporaneità. In sostanza, maggiore è il numero di utenze dell'impianto e minore sarà la percentuale di apparecchi aperti contemporaneamente.

Tabella coefficienti di contemporaneità in %

Numero Apparecchi	Abitazioni %	Comunità %	Numero Apparecchi
5	54	64,5	35
10	41	49,5	40
15	35	43,5	45
20	29	37	50
25	27,5	34,5	60
30	24.5	32	70

Conte	прогаг	ieila iii	,	′ 0		
Numero Apparecchi	Abitazioni %	Comunità %		Numero Apparecchi	Abitazioni %	Comunità %
35	23,2	30		80	16,5	22
40	21,5	28		90	16	21,5
45	20,5	27		100	15,5	20,5
50	19,5	26		150	14	18,5
60	18	24		200	13	17,5
70	17	23		300	12,5	16,5

I passi da seguire per un corretto dimensionamento sono i seguenti:

 A fronte del numero e del tipo di apparecchi presenti nell'impianto, si calcola la portata totale, sommando le loro singole portate caratteristiche

Esempio:

Unità abitativa con 2 bagni

G_{tot} = 81 l/min No. apparecchi = 10

 Attraverso la tabella dei coefficienti di contemporaneità, si calcola la portata di progetto.

Esempio:

$$G_{pr} = G_{tot} \cdot \% = 81 \cdot 41 \% = 33 \text{ l/min}$$

Nella fase di dimensionamento dei riduttori, è consigliabile contenere la velocità del flusso nelle condotte tra 1 e 2 metri al secondo. Questo per evitare rumorosità nelle tubazioni ed una rapida usura degli apparecchi di erogazione.

 Mediante il grafico 1, partendo dal dato di portata di progetto, si determina il diametro del riduttore tenendo conto che la velocità ideale è compresa tra 1 e 2 m/s (fascia azzurra).

Esempio:

per G_{pr} = 33 l/min si sceglie il diametro 3/4" (vedi indicazione sul grafico 1)

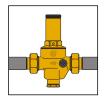
 Dal grafico 2, sempre partendo dal dato della portata di progetto, si individua la caduta di pressione intersecando la curva relativa al diametro scelto in precedenza (la pressione a valle scende di un valore pari alla caduta di pressione, rispetto alla pressione di taratura a portata nulla).

Esempio:

per $G_{pr} = 33$ l/min $\Delta p = 0.55$ bar (vedi indicazione sul grafico 2)

Portate nominali

A fronte di una velocità media di 2 m/s, riportiamo le portate di acqua relative ad ogni diametro secondo i requisiti della norma EN 1567.


Diametro	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Portata (m³/h)	1,27	2,27	3,6	5,8	9,1	14
Portata (I/min)	21,16	37,83	60	96,66	151,66	233,33

Installazione

- Prima dell'installazione del riduttore di pressione, aprire tutti i rubinetti di erogazione per pulire l'impianto ed espellere l'aria rimasta nelle tubazioni.
- 2) Installare le valvole di intercettazione a monte e valle per facilitare le operazioni di manutenzione.
- 3) Il riduttore di pressione può essere installato sia con tubazione verticale che orizzontale.

E' tuttavia indispensabile che non sia capovolto.

4 Chiudere la valvola di intercettazione a valle

- 5 Effettuare la taratura agendo sulla ghiera premimolla, posta sotto il tappo della campana, con una chiave esagonale da 10 mm o cacciavite a taglio in senso orario per aumentare il valore di taratura, in senso antiorario per diminuirlo.
- 6 Leggere sul manometro il valore desiderato. (I riduttori Caleffi hanno una taratura di fabbrica di 3 bar).

Consigli per l'installazione

1. Installazione in pozzetti

E' sconsigliato installare i riduttori di pressione all'interno di pozzetti principalmente per quattro motivi:

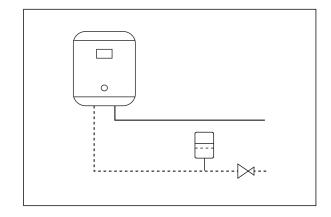
- si rischia che il gelo possa danneggiare il riduttore
- si hanno difficoltà nelle operazioni di ispezione e manutenzione
- si hanno difficoltà nella lettura del manometro
- è possibile che delle impurità entrino nel dispositivo attraverso i fori per lo sfogo della compressione volumetrica presenti sulla campana.

2. Colpi d'ariete

Questo è uno dei maggiori fattori di rotture dei riduttori di pressione

Durante l'installazione in impianti "a rischio" è bene prevedere l'uso di dispositivi specifici atti all'assorbimento dei colpi d'ariete.

Anomalie funzionali


Spesso si addebitano erroneamente al riduttore di pressione alcune anomalie che, in genere, sono dovute alla mancanza di determinati accorgimenti impiantistici. I casi più frequenti sono:

1. Incremento della pressione a valle del riduttore in presenza di un boiler

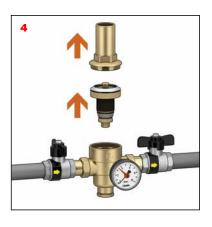
Questo problema è dovuto al surriscaldamento dell'acqua provocato dal boiler.

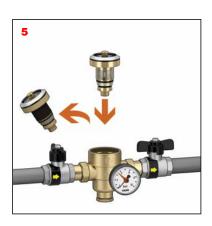
La pressione non riesce a "sfogare" in quanto trova il riduttore giustamente chiuso.

La soluzione è costituita dall'installazione di un vaso d'espansione (tra il riduttore ed il boiler) che "assorbe" l'incremento di pressione.

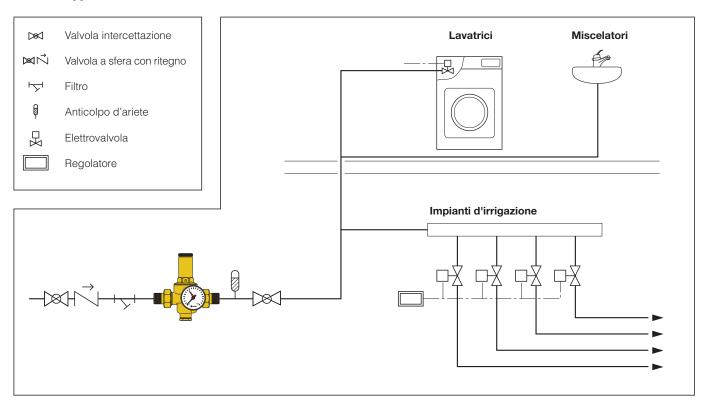
2. Il riduttore non mantiene il valore di taratura


Nella maggioranza dei casi questo problema deriva dalla presenza di impurità che si posano sulla sede di tenuta provocando trafilamenti e conseguenti incrementi di pressione a valle.


La soluzione è costituita preventivamente dall'installazione di un filtro a monte del riduttore e successivamente dalla manutenzione e pulizia della cartuccia estraibile (vedi voce manutenzione).


Manutenzione

Per la pulizia, il controllo o la sostituzione dell'intera cartuccia, occorre:


- 1 Intercettare il riduttore.
- 2 Svitare la ghiera premimolla fino a togliere la tensione alla molla stessa.
- 3 Smontare la campana.
- 4 Estrarre la cartuccia con l'aiuto di due cacciaviti.
- 5 L'intera cartuccia, dopo l'ispezione e l'eventuale pulizia, può essere rimontata oppure sostituita utilizzando la cartuccia di ricambio.
- 6 Ritarare il riduttore.

Schema applicativo

TESTO DI CAPITOLATO

Serie 5360

Riduttore di pressione a sede compensata a norma EN 1567. Misura DN 15 (da DN 15 a DN 40). Attacchi filettati 1/2" (da 1/2" a 1 1/2") M (ISO 7/1) a bocchettone. Corpo in ottone. Sede e filtro in acciaio inox. Membrana e guarnizione di tenuta in NBR. Fluido d'impiego acqua. Temperatura massima d'esercizio 80°C. Pressione massima a monte 25 bar. Campo di taratura pressione a valle da 0,5 a 6 bar. Superfici di scorrimento rivestite a caldo con PTFE. Cartuccia con membrana, filtro, sede ed otturatore, estraibile per operazioni di manutenzione.

Serie 5362

Riduttore di pressione a sede compensata. Misura DN 15 (da DN 15 a DN 25). Attacchi filettati 1/2" (da 1/2" a 1") F (ISO 228-1). Corpo in ottone. Sede e filtro in acciaio inox. Membrana e guarnizione di tenuta in NBR. Fluido d'impiego acqua. Temperatura massima d'esercizio 80°C. Pressione massima a monte 25 bar. Campo di taratura pressione a valle da 0,5 a 6 bar. Superfici di scorrimento rivestite a caldo con PTFE. Cartuccia con membrana, filtro, sede ed otturatore, estraibile per operazioni di manutenzione.

Serie 5365

Riduttore di pressione a sede compensata a norma EN 1567. Misura DN 40 (DN 40 e DN 50). Attacchi filettati 1 1/2" (1 1/2" e 2") M (ISO 7/1) a bocchettone. Corpo in bronzo. Sede e filtro in acciaio inox. Membrana e guarnizione di tenuta in NBR. Fluido d'impiego acqua. Temperatura massima d'esercizio 80°C. Pressione massima a monte 25 bar. Campo di taratura pressione a valle da 0,5 a 6 bar. Superfici di scorrimento rivestite a caldo con PTFE. Cartuccia con membrana, filtro, sede ed otturatore, estraibile per operazioni di manutenzione.

Serie 5366

Riduttore di pressione a sede compensata. Misura DN 65. Attacchi flangiati PN 16. Corpo in bronzo. Sede e filtro in acciaio inox. Membrana e guarnizione di tenuta in NBR. Fluido d'impiego acqua. Temperatura massima d'esercizio 80°C. Pressione massima a monte 16 bar. Campo di taratura pressione a valle da 0,5 a 6 bar. Fornito con doppio manometro 0÷25 bar a monte e 0÷10 bar a valle. Superfici di scorrimento rivestite a caldo con PTFE. Cartuccia con membrana, filtro, sede ed otturatore, estraibile per operazioni di manutenzione.

Ci riserviamo il diritto di apportare miglioramenti e modifiche ai prodotti descritti ed ai relativi dati tecnici in qualsiasi momento e senza preavviso.

